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Thermal instability and convection of a thin fluid layer 
bounded by a stably stratified region 

By J. A. WHITEHEAD? AND M. M. CHENS 
Yale University, New Haven, COM. 

(Received 18 December 1968 and in revised form 30 September 1969) 

Results of linear stability calculations and post-stability experimental observa- 
tions are reported for horizontal fluid layers with upward heat flux bounded 
below by a stably stratified fluid. Stability calculations were done for several 
families of continuous and discontinuous temperature distributions, and it was 
found that as a rule the flow originating in the unstable layer penetrates into the 
stably stratified region, resulting in increased critical cell size and correspondingly 
decreased critical Rayleigh number. A notable exception to this occurs for an 
unstable layer with a linear temperature distribution adjacent to a stable layer 
of very high stable density gradient. In  this case energy pumped from the unstable 
to the stable region is sufficient to raise the critical Rayleigh number above that 
of a solid boundary. It is also found that, for density distributions with a more 
gradual transition between the stable and the unstable regions, the effect of 
increased cell size upon the critical Rayleigh number is sometimes masked by 
effects of curvature in the density profile of the unstable region, which tends to 
increase the critical Rayleigh number. The inadequacy of the usual definition of 
Rayleigh number to characterize the stability of such complex systems is dis- 
cussed. Experimentally, such a temperature distribution was produced by 
radiant energy from above as it was absorbed by the top few centimetres of the 
fluid. Within an uncertainty of ZO%, it  was found that the critical experimental 
Rayleigh number agreed with neutral stability calculations. The supercritical 
convective motion consisted of vertical jets of cool surface fluid which plunged 
downward into the interior of the fluid. The jets were not arranged in an orderly 
lattice but were in a constant state of change, each jet having a tendency to 
merge with a close neighbour. The net loss of jets due to merging was balanced 
by new jets spontaneously appearing. As Rayleigh number was increased, the 
mean number of jets and the intermittancy increased proportionally. Tem- 
perature scans taken with a movable probe showed that cool surface fluid 
plunging downward in the jets was confined to a fairly restricted region, the 
surrounding fluid being quite isothermal. 
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$ Present address : Department of Mechanical Engineering, New York University, 
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1. Introduction 
This communication reports the results of a study of motionless fluid layers 

with unstable temperature gradients bounded by one or two stably stratified 
regions, as shown in figure 1. The body of the text has two sections, 2 and 3; 
$ 2  (i) and $ 2  (ii) are concerned with the effects of the shape of the density profiles 
and the magnitude of the adjacent stable gradients upon the stability conditions 
and the small amplitude flows associated with the corresponding eigenfunctions. 
Physically interesting temperature distributions of several representative classes 
are considered. In  § 3 (i) and (ii), experimental observations are reported for 
the stability and qualitative structure of finite amplitude supercritical flow for 
a family of profiles produced by non-uniformly distributed radiative heating. 
Parameters of the flow, such as the horizontal length scales and vertical 
temperature differences, are also shown. 

Unstable t 
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A l  

- Z  

The problem differs from the classical Rayleigh-BBnard problem (see 
Chandrasekhar 1961, chapter I) in that the perturbations in the unstable region 
are coupled to flows in the adjacent regions which have stable temperature 
gradients. Our study is motivated by the realization that thermal instability is a 
simple prototype of many fluid and plasma problems currently under active study, 
and that in a large number of these, if not the majority, the relevant adverse 
gradient is confined to only a limited region of the entire volume being studied. 
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It is perhaps more obvious that such locally unstable layers are frequently found 
in the atmosphere and the oceans, as attested by the number of related papers 
cited below. It should not be difficult to see that equivalent situations are found 
in the problem of Taylor instability for flows between counter-rotating cylinders, 
and of particular relevance to the profiles chosen in this study, for flows along 
concave surfaces where the primary adverse velocity gradient exists in the 
boundary layer. The closely related interchange instabilities in plasmas almost 
always originate in thin layers of sharp density or field gradients (Lehnert 1967). 

An obvious example of convective flow in nature is the isothermal region near 
the ocean surface, which in many situations is created by intense but localized 
mixing due to temporal lowering of the surface temperature. This often occurs 
in an otherwise stably stratified ocean, the stratified fluid lying below the con- 
vecting fluid. Similar situations are found in atmospheres and lakes due to solar 
heating of the ground and lake bottoms. Although these processes are caused 
ultimately by transient effects, the disparity between the slow time scale associ- 
ated with surface changes and the fast time scale associated with convective 
eddies renders the problem quasistatic. 

The volume heating employed in the present experiments is in the form of 
progressively attenuated radiation from above. One may find direct analogues 
of this situation in oceanography and meteorology. The importance of volume 
heating in the topmost few metres of ocean water has been pointed out by 
Kraus & Rooth (1961). Although they felt that solar heating as a source of the 
fluid kinetic energy is not as important as wind shear, it can be easily demon- 
strated with the results of § 3 (i) and (ii) of this paper, that, in the absence of 
wind, solar heating is more than adequate to produce intense thermal convection. 
It is also not difficult to see that similar thermal convection due t o  distributed 
solar heating may be present in shallow lakes containing turbid waters and on top 
of smoggy air masses. In  the latter case sunlight, absorbed by the topmost layer 
of the smog, contributes to the temperature reversal in the smog but promotes 
convective mixture between the smog and the clear air above. 

It has already been demostrated that in systems with complex temperature 
profiles finite amplitude effects may be important even at  very low Rayleigh 
numbers (Veronis 1963; Krishnamurti 1968 a) .  Currently available techniques 
for non-linear analysis (Segel 1967), on the other hand, require a priori assump- 
tions concerning the phenomenological nature of the flow, e.g. periodicity, 
quasi-steadiness, etc. Thus experimental observations are needed as a guide for 
the theoretical studies. 

2. Density profiles and stability conditions 

Although the governing equations for the several problems cited above are 
similar, most of the existing theoretical studies have been motivated by thermal 
convection problems of geophysical interest. However, because of mathematical 
convenience rather than physical considerations, these studies are confined to 
either piecewise linear density profiles or parabolic density profiles. The solutions 

(i) Stability calculations 
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of the former (Gribov & Gurevich 1957; Rintell967) can be obtained by matching 
t h e  boundary conditions for separate solutions of each linear region which is 
governed by well-known equations. These profiles are clearly unrealistic. It is 
also not immediately clear whether the artificial discontinuities might give rise 
to anomalous results. 

The solution for the parabolic density profile, mathematically equivalent to the 
Taylor instability of counter-rotating cylinders originally solved by Chandra- 
sekhar (1961, pp. 289-317), has also been solved with various modifications by 
Veronis (1963) and Krishnamurti (1968a, b) .  While the profile i s  physically 
meaningful to the three respective physical models which were suggested by the 
above authors, it  is not always relevant in the geophysical contest, where the 
adjacent stable regions are usually much larger in dimension than the unstable 
layer, and occasionalIy have stable gradients much smaller in magnitude than 
the unstable gradients. Having a constant second derivative, the parabolic 
density profiles do not lend themselves to the study of the influences of the 
magnitude of stable gradients. 

MMe these simple distributions are clearly advantageous for analytical 
studies where qualitative theoretical questions have to be answered, for the 
quantitative determination of stability conditions (the case of Gribov et al. and 
Rintel), their advantage is marginal. The authors have consequently chosen first 
to investigate more complex distributions in the interest of answering specific 
questions related to the shape of the distributions. This necessitated the use of 
numerical techniques for the integration of the relevant eigenvalue problem; 
the problem does not appear to have qualitative features subtly different from 
those considered by Chandrasekhar and Veronis. 

The formulation. We shall assume that the profile in question arises when a 
fluid layer, with thermal expansion coefficient a, is heated internally by a 
horizontally uniform heat source Q ( z ) ,  Adopting the Boussinesq approximation, 
the continuity, momentum and energy equations in dimensionless form are: 

v.u = 0,  (2.1) 

(2.2) 

(2.3) 

Pr-1 ((au/&) + Ra(u . V u ) )  = - V p  + V2u - t k ,  

( a t p T )  +Ra(u.Vt) = V2t + &(z) ,  

where the dimensionless parameters Ra and Pr are defined as 

Ra = guL3A&/~v,  

Pr = V / K .  

In these expressions g is the gravitational constant, K the thermometric con- 
ductivity, v the kinematic viscosity, t the dimensionless temperature perturba- 
tion ( l /A t )d ,  and u is the dimensionless velocity (v/gaAtL3) u. Script characters 
denote dimensional variables. 

Contrary to the classical Rayleigh-BBnard problem, there is no longer a 
clear-cut choice for the characteristic dimension L and the characteristic tempera- 
ture difference in A t  the above normalization. Some authors (Sparrow, Goldstein 
& Jonsson 1963; Krishnamurti 1967) chose to  retain the conventional definition 
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and use the total depth between the top and bottom boundaries as L. While this 
choice is satisfactory when the depth of the stable layer is small relative to the 
unstable layer, it is clearly unsatisfactory when the depth of the stable layer 
is large. It becomes completely meaningless for an infinitely deep stable layer 
when one boundary, isolated by the stratified fluid from the destabilized layer, 
plays no role whatsoever on the fluid motion. 

An alternative choice for L is the length scale L, of the heat flux function ~ ( a )  
(see figure 2). Note that since attention here is focused on temperature profiles 
with slopes approaching -/3 at large distances, ~ ( z )  must vanish rapidly for x 
large relative to a certain value, which can then be identified as L,. An example 
is a partially transparent fluid layer heated from above by radiation, such as the 
case investigated experimentally, where L, represents the extinction length of 
the radiation field. The advantage of using L, for a length scale is that it is a given 
parameter and that it remains a finite constant for infinitely deep stable layers. 
Unfortunately, L, is neither equal to nor directly related to the actual depth of 
the destabilized layer. 

Because of these considerations, it was decided to use the destabilized layer 
depth and its temperature difference as L and A t .  Although these two quantities 
are not directly given, they can be evaluated easily from the motionless solution 
of the problem, whose determination is not considered central to  the instability 
problem. There is a possibility that convection would change the depth of the 
temperature maximum, so in reporting the post-critical parameters the L 
selected was that L found by solving the heat equation with no motion. The value 
of AL was the physically measured temperature difference. 

Using an overbar to denote the motionless solution and script d, x and P to 
denote that they are dimensional, we have 

(d22/dz2) +a(%) = 0, (2.6) 

where +) = & k ) / K ?  

for the boundary conditions, 

t(01 = to, J(o) =to at x = 0,  (2.7) 

(ak/az)+-P as z-tco. (2.8) 

The solutions are, implicitly, 

(2.10) 

The perturbation equations. We shall next consider that the unperturbed 
solution ii ( = 0) and tare disturbed by infinitesimal perturbations il and t. Using 
normal mode techniques in assuming 

fi = U(z) eiCa.z)+d (2.11) 

f = T ( z )  ei(a.%)+rt (2.12) 
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it can be shown that the amplitude functions W(x) and T ( z )  obey the following 

(2.13) equations : 

(2.14) 

(0' - a2 - a) T = - R a f ( ~ )  W ,  

( 0 2  - a2 - Pr-1 CT) ( 0 2  - a2) w = a2T, 

where the normalized density gradient 

f(2) = aqaz (2.15) 

is considered known. It approaches PLIAt as x+m. 
This problem differs from the classical Rayleigh-BBnard problem primarily 

as a result of the variable coefficient f(z) on the right-hand side of (2.13). This 
function is the only link between the linear stability problem and the agency by 
which the density distribution is produced. Derivations with somewhat similar 
results have been given by Morton (1957) and Foster (1965a).  

Analogous to the Rayleigh-BBnard problem, we consider two types of 
boundary conditions for the top surface: 

W = D2 W = T = 0, 

W = D W = T = 0, 

free isothermal boundaries, 

non-slip isothermal boundaries. 

(2.16) 

(2.17) 

Either boundary condition could also be considered for the bottom boundary. 
Of course, when the stable layer is infinitely deep, all quantities and derivatives 
must vanish for large x .  In this case it is immaterial whether (2.16) or (2.17) is 
used. 

From the foregoing it is clear that the linear stability problem is an eigenvalue 
problem as stated in (2.13) and (2.14) and one of the two boundary condition sets 
(2.16) or (2.17). Giving the Rayleigh number Ra and the dimensionless density or 
temperature profile f ( x )  completely specifies the problem. 

An important property of the temperature profile is its asymptotic slope 
PL1A.k. Following Gribov & Gurevich (1957), this property will be stated in terms 
of the dimensionless parameter X : 

8 = golPL4/KV. (2.18) 

The choice of this form, rather than simplypL/AJ, is inspired by the consideration 
that X more accurately describes the response of the stably stratified layer to 
perturbations with length scales of the order of L. 

It is to be expected that any influence of the unperturbed density distribution 
on the results of the linear stability problem must be a functional of i ( x ) .  Con- 
sequently, one cannot describe other relevant properties of the temperature 
profile by one or two simple parameters. To investigate the influence of the 
profiles, one must then compare several families of profiles, with individual 
members of each family characterized by the parameters Ra and S. These 
families will be described in detail in a later section. 

A considerable simplification occurs for all solutions of neutral stability, 
because it has been shown that a neutral mode is non-oscillatory for free 
boundaries, that is, ai = 0 when ar = 0 for growth rate a = ar + iai. Proofs for 
the parabolic temperature distributions with free boundaries have been given by 
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Veronis (1963), modelled after an unpublished proof for arbitrary temperature 
distributions by Spiegel. The same technique is easily used for any general distri- 
bution. An analogous proof for rigid boundaries could not be found, although, 
since the non-slip boundary only increases dissipation, it is expected that such 
flows would also be non-oscillatory. For more detail on the proof for free 
boundaries, interested readers are referred to Whitehead (1968), and for rigid 
boundaries readers are referred to the heuristic discussions of Chandrasekhar 
(1961) concerning the exchange of stabilities of the Taylor instability problem. 

For non-oscillatory, neutral modes (a. = 0), (2.13) and (2.14) can be combined 
to eliminate T ,  resulting in 

(D2-az)3W = -Raa2f(z) W .  (2.19) 

Our task is to solve for the eigenvalue Ra = Ra(a) for a givenf(z), subject to 
appropriate boundary conditions for the top and bottom surfaces. The minimum 
value of Ra and its corresponding wave-number yields the critical quantities 
Ra, and a,. 

Method of soZution. Although we are primarily interested in problems with 
infinitely deep stable layers, the numerical solution can be handled somewhat 
more conveniently for a finite depth D. The problem is then solved for a dimen- 
sionless depth D/L.  The asymptotic values of the results for large DIL are taken 
as the infinite solution. 

To facilitate the numerical integration of (2.19), use is made of three auxiliary 
functions q. (j = 1,2 ,3) .  These have all six derivatives specified at z = 0, such 
that the top three boundary conditions (2.16) or (2.17) are satisfied, and so that 
each of the three functions is independent. All solutions of the equation, includ- 
ing those satisfying the bottom ( z  = D / L )  boundary conditions, must be linear 

(2.20) 
combinations of y. : 
The three unknown constants can be determined by applying the three boundary 
conditions at  the bottom. 

In actual computation, a trial value of Ra, is assumed for a given wave- 
number a, and the three %.'s are evaluated by stepwise integration of (2.19) 
using repeated application of series solution around each new value of z. When 
W, and their derivatives are evaluated at  z = D/L,  the bottom boundary condi- 
tions are utilized to determine the unknowns A ,  B and C .  Since all boundary 
conditions are homogeneous, there are in fact only two independent unknowns, 
say BIA and CIA, for the three equations. The compatibility condition for these 
equations is then used to check whether the trial Ra, is correct. If the assumed 
RU, is incorrect, the equations would be found to be incompatible, and a new 
value of Ruc would be assumed and the process repeated until a solution of 
satisfactory precision is obtained. Details of the method of calculation are found 
in Whitehead (1968). 

The estimated error for the most unfavourable case (linear-linear profile with 
S = 106) is approximately 6 x For the bulk of the computations the error is 
considerably smaller. 

Temperature profiles. Calculations have been carried out for three simple 

W = AW, + BW, + CW,. 
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families of temperature profiles. It is instructive to consider them as consequences 
of the limiting forms of the heat source function Q(z ) .  

The simplest case arises when the heat source is not well-distributed, but is 
concentrated in the vicinity of a particular depth. In  that limit, &(z)  is repre- 
sented by the delta function 

&(%) = K{P+ (Ad/L))6(#-  L). (2.21) 

The resulting temperature profile is then linear in the two intervals (0, L),  (L, D )  
with a discontinuity in slope at  z = L (see figure 2(a)). This is the profile con- 
sidered by Gribov & Gurevich (1957) and Rintell(l967). We shall refer to this as 
the linear-linear profile. 

(0) (h)  (4 (4 
FIGURE 2. The four tempcraturc distributions t ( x )  whose stability was 

invcstigatcd in this work. 

A special case of this is a temperature profile which is antisymmetric about the 
origin (figure 2 ( b ) )  where no solid boundary is assumed to exist. This profile will 
be referred to as the linear-antisymmetric profile. It is obtained numerically by 
noting that the temperature is antisymmetric about the plane x = 0, andf(z) is 
correspondingly symmetric. This causes (2.19) to be symmetric about z = 0, in 
which case DW = D3W = D5W = 0 at z = 0. The antisymmetrical results are 
thus obtained by using these as boundary conditions at z = 0. 

Both these profiles are rather artificial and unlikely to be found either in 
nature or in the laboratory. 

At the opposite extreme & ( x )  could be such a slowly varying function that its 
length scale L, could be considerably greater than L. This occurs when the condi- 
tions are such that the major portion of the heat flux flows downward into the 
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stably stratified region. If Q(z) is non-zero at  the origin and remains relatively 
constant over a depth greater than L, the temperature profiles could be assumed 
to be parabolic (figure 2(c) and (d)).  This is the problem analyzed by Veronis 
(1963). It should be noted that for the parabolic profile the temperature gradient 
approaches infinity as depth approaches infinity. Therefore S is not a freely 
varying parameter in such a situation. 

One of the simplest and most physically meaningful profiles permitting an 
assignable stable gradient S is the one arising out of an exponential heat source 

(2.22) 
function 

which could conceivably be the result of unidirectional radiation absorbed by a 
grey fluid, where l/x, can be identified with the volume absorption coefficient. 
zo may also be identified with the L, discussed above. When this heat source is 
present in a fluid layer which has an asymptotic stabilizing gradient p, the 
following profile is produced (figure 2 (d ) )  : 

-t = -[e-  +o - pz . (2.23) 

Note that, as a consequence of our definition of L, the latter is a variable 
depending on p, zo and [. From (2.9) and (2.10)’ 

&(z) = cexp [-z/zol, 

L = zoln ([IPzo), (2.24) 

A t  = c - Pzo(ln (Pzo/C-, - 1). (2.25) 

This family of profiles shall be referred to as the ‘ exponential-linear profile ’ . 
It is seen that, for pzo/[ 9 1, the profile approaches the parabolic profile in the 
most important upper portions. 

(ii) Discussion of results 

Piecewise-linear distributions. The results for piecewise-linear distributions are 
shown in figures 3-5. 

InJIuence of stratified layer depth. The variation of critical Rayleigh number 
and critical wave-number with DIL is shown in figure 3. It is seen that, except 
for very large S, both Ra, and a, decrease with increasing depth for small depths, 
and approach a constant asymptotic value for large depths. Examination of these 
figures indicates that the decrease in critical Rayleigh number was in a large part 
due to the increase of convection cell size, which is proportional to the reciprocal 
of the critical wave-number. In  the limit of large depth, the cell size becomes 
a function of S only, with the consequence that Ra, approaches an asymptotic 
value for a given S. The following discussions are concerned with these asymptotic 
values of Ra, and a,. 

The inJIuence of stabilizing gradient as S -+ 0. The dependence of Ra, and a, on S 
for the linear-linear distribution with an infinitely deep stable region is shown 
in figure 4. It is seen that for low values of X, both Ra, and a, decrease with 
decreasing S. This is a manifestation of the fact that for low values of S, the cell 
size is not limited by the unstable depth L, but by the inherent depth scale 
associated with the decay of perturbations in the stably stratified region, a 
quantity which increases with decreasing S. 
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s= 100 

2 4 811 2 4 8 
Free boundaries ( D / L )  

1 

Rigid boundaries (D/L)  

FIGURE 3. Predicted critical Rayleigh number and wave-number as functions of the depth 
ratio D / L  for linear-linear profiles at  various values of S.  

Stabilizing gradient 

FIGURE 4. Critical Rayleigh number (top) and wave-number (bottom) of infinitely deep 
stable regions as functions of asymptotic dimensionless stable gradient S. = , linear-linear 
free; -, linear-linear rigid; - - , linear-antisymmetric ; . . . , exponential-linear free ; 
0000, exponential-linear rigid; 0, experimental results. 
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For the case of free-slip boundary at  z = 0, the critical Rayleigh number 
approaches the $ power of S as a limit. This is in agreement with the calculations 
of Gribov & Gurevich. For non-slip boundary conditions the Rayleigh number 
has a much weaker dependence on 8, decreasing to S~O- at S = 0.001. 

As S+m.  As S approaches co, the critical Rayleigh number approaches a 
constant. This can be anticipated, since the large stabilizing gradient prevents 
any effective penetration into the stable region. It is surprising, however, that the 
asymptotic values of Ra, at large S are 2434.7 and 3487, for free-slip and non-slip 
boundaries respectively. These values are considerably greater than the free- 
rigid and rigid-rigid results for the classical Rayleigh-BBnard problem, indicating 
that a stratified layer of fluid may have greater stabilizing influences than a solid 
non-slip surface. 

s= 105 s= 1 
/------7 

' W  Tc WP' W T* W P  

/< 
> I: 

I 

I 

(1 h C d e f 
FIGURE 5. The velocity function W ,  a rescaled temperature T*, and the product WT* for 
the linear-linear profile with S = lo6 and S = 1. Because this is a homogeneous problem, 
the absolute magnitude of Wand T were arbitrary. Consequently, we let W,,, = 1, and to 
plot the temperature perturbation on a comparable scale we defined ( b )  T* = - 2 x T, 
( c )  T* = - 2  x T, ( e )  T* = - 10-1 T, (f) T* = - 10-lT. 

This surprising result is perhaps better explained by examining the plot of 
WT*, which represents the rate of work done by the buoyancy force. This is 
shown in figure 5. It is seen that while WT* is positive in the major part of the 
flow field, there is a small region near the transition between the stable and 
unstable regions where WT* is negative. In  this plot, T* is a rescaled temperature 
perturbation. Furthermore, as the depth of the stable region is increased, the 
depth of this negative region decreases while the magnitude of WT* increases. 
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Consequently, the buoyancy force is always pumping energy into the stable 
region, resulting in a restraining mechanism for convection. 

In  Gribov & Gurevich (1957), the asymptotic free-slip boundary Ra, for 
large 8, was given as 370. This was traced to an error in their equations. A cor- 
rected derivation following their procedures yields an answer identical t o  the 
numerical results cited above. 

Rintell(l967) calculated that as D / L  increases, the minimum critical Rayleigh 
number should be 1100 when the stabilizing gradient is 1.1 x 1O1O. Figure 3 indi- 
cates how this result could be obtained. From our calculations, as DjL increases 
with a fixed 8,t the critical Rayleigh number first decreases to a minimum, then 
increases. The decrease is less for greater values of S, and the minimum 
approaches the critical Rayleigh number when DIL = 1. Since Rintell’s top 
boundary was free and the bottom boundary rigid, the calculated minimum 
critical Itayleigh number approaches the rigid-free value of 1100 for the 
Rayleigh-BBnard case as X becomes very large. Our results are consistent with 
Rintell’s. 

For the linear-antisymmetrical profiles, the results do not differ qualitatively 
from those found for linear-linear distributions, as seen in figure 4. When DjL 
is large and the stabilizing gradient low, critical Rayleigh number appears to be 
approaching the Gribov & Gurevich power law of Ra, = 7.88%. The wave- 
numbcr, however, does not approach their power law of a, = 0.68%. When the 
stabilizing gradient is high, our results approach the value Ra, = 6866, which 
greatly exceeds the limiting value of 107 predicted by Gribov & Gurevich. 
Wave-numbers also disagree markedly, being 5.07 in the limit for our case, and 
2.6 for theirs. 

The exponential-linear projile. The computed Ra, and a, for exponential-linear 
profiles (figure 2 )  are also shown in figure 4 as functions of S. It is indeed sur- 
prising to  see that Ra, is only weakly dependent on S. For the range of values 
considered, Ra, is practically constant for the free-slip boundary case, and 
increased somewhat as S decreased for the non-slip boundary. 

A more detailed examination of figures 2 and 4 indicates that this unexpected 
consequence is the result of two competing influences. In  the first place, it is 
seen from figure 4 that the critical wave-number for the exponential-linear case 
behaves in a way quite similar to the linear-linear case. I n  both cases it decreases 
for decreasing S ,  due to the increased inherent depth scale of the stably stratified 
region. Corresponding to this decrease in wave-number or increase in cell size, 
there would be a tendency to reduce the critical Rayleigh number. 

On the other hand, when S becomes progressively smaller, the destabilizing 
temperature difference becomes more and more concentrated in a narrow region 
near the top boundary, where W vanishes. This is illustrated in (2.24), where the 
exponential ‘length scale’ zo is less than L for small p. Therefore, the product 
f ( x )  W becomes small everywhere, resulting in reduced power input to the fluid. 
This argument is substantiated by the computations of Sparrow et al. (1963), 
who found that for a shallow unstable layer Ra, decreases when the temperature 
profile departs from the linear. 

t Strictly speaking, Rintell did not fix S ,  but fixed x = S/Ra,. 
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It is not surprising that the critical Rayleigh number associated with rigid 
boundaries increases at  low S because the non-slip boundary conditions oppose 
a large value of W in just the region near the walls where the temperature 
difference is concentrated. 

Parabolic profile. For infinitely large S ,  the exponential-linear profile 
approaches the parabolic profile, yielding 

Ra, = 275.33, 

a, = 1.58, 

for a free boundary, in agreement with the calculation of Chandrasekhar (1961), 

and Ra, = 589.44, 

a, = 2-03, 

for a non-slip boundary, in agreement with the calculation of Veronis (1963). 
In  summarizing the stability calculations, perhaps the most interesting con- 

clusion which could be drawn is that an adjacent stably stratified region could 
represent a large energy sink, thus acting as a stabilizing agent for a thermally 
unstable fluid layer in increasing the critical Rayleigh number. While this effect 
is undoubtedly present in varying degrees for all temperature profiles, it is most 
apparent for the piecewise-linear profiles. Since the latter permit discontinuity 
in slope, it is possible to have extremely high stabilizing gradients immediately 
adjacent to the unstable layer. For other profiles with smooth transition between 
the stable and unstable regions, the effect is masked by other influences and 
clear-cut trends could not be easily observed in the experiment. 

A similar difficulty exists for fluid layers bounded by regions of low stabilizing 
gradients. It is generally true that, as S becomes smaller, the flow field penetrates 
deeper into the stable regions, with the result that the critical wave-number tends 
to be smaller. For the piecewise-linear profiles, this results in reduced critical 
Rayleigh number. Again, for continuous profiles, as evidenced by the computa- 
tions for the exponential-linear profiles, this effect is masked by other influences 
arising out of the complexity of the temperature distributions. 

These difficulties in comparing different profiles are clearly due to the fact 
that the Rayleigh number, as it is usually defined, involves in fact only the 
parameters L and A t .  Consequently, it  is not an adequate indication of the 
stability of complex profiles, where the various depths have varying contribu- 
tions to the stabilizing and destabilizing forces. The authors attempted a variety 
of algebraic definitions for the Rayleigh number, basing them upon physical 
arguments. None was found to be wholly satisfactory for all temperature distri- 
butions. One might expect that a definition based on certain integrals of the 
temperature profile would better describe the stability of such complex systems. 

3. Structure and stability of supercritical flow 
(i) Experimental investigation of penetrative flows 

Many ‘ bathtub ’ examples of convection involve transient heating or cooling of a 
surface and penetration into a stable region; the ‘soapy water’ tessellated 
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polygons observed in 1882 by James Thompson could easily have arisen under 
such circumstances. Likewise, in nature there are bodies of fluids whose 
boundaries undergo daily or seasonal temperature variations-the surface of the 
ocean is a good example. Experimentally, models of these situations have been 
made by Foster (1965b) and Spangenberg & Rowland (1961) by changing the 
top surface temperature of an initially isothermal body of fluid. The problem 
differs from the one we propose to study in that flow in the isothermal region is 
resisted only by the relatively weak viscous forces, with the consequence that 
once convection commences the flow penetrates deep into the isothermal region 
and the entire system proceeds catastrophically to one of a completely different 
configuration. I n  the experiments of Spangenberg & Rowland and Foster 
evaporative cooling (approximating constant superficial heat flux) eventually 
restored the initial condition to a degree, and the process began a new cycle, to 
be repeated many times over. Such phenomena are not characteristic of systems 
with a stably stratified region, which resists the flow from the adjacent unstable 
region to an extent determined by the stable temperature gradient. Similarly the 
volume heating experiments of Tritton & Zarraga (1967) and Krishnamurti 
(1968 b ) ,  though possessing curved temperature profiles, also were not concerned 
with stably stratified regions. 

A similar experiment with a suddenly increasing bottom temperature pro- 
duced convection which penetrated into an initially stratified fluid (see Deardorff, 
Willis & Lilly 1969). The stratification was not of a magnitude great enough to 
prevent penetration of the unstable fluid to the top of the tank, it merely could 
retard the rate of advance of the mixing. 

The only thermal oonvection experiments with a stably stratified region of 
sufficient strength to limit the penetration of the fluid appears to be that of 
Townsend (1966) and some unpublished experiments of Furumoto & Rooth (see 
Veronis 1963). Both utilized water layers with the top and bottom boundary 
temperatures lying above and below 4 "C, which corresponds to maximum water 
density. While the scheme is indeed quite clever and the problem is also physically 
relevant to the formation of ice layers, the system appears to possess a unique 
mechanism of finite amplitude instability (Veronis 1963), which may not be 
shared by systems without such unusual density-temperature relationships. 
Furthermore, the  density gradient in the stably stratified region could not be 
changed at  will to investigate its effects on the flow. 

In  the present experiments, the required density profile was produced by 
maintaining a stable temperature gradient with controlled boundary tempera- 
tures, then providing radiative heating through the transparent boundary from 
the top. The radiative energy was absorbed and attenuated by the topmost layer 
of a few millimetres in depth, which then dissipated the heat by upward and 
downward heat conduction, resulting in a shallow unstable layer on top and 
a region of stable gradients below. The system could be maintained in a steady 
state, thus permitting thc separation of purely transient effects from those 
which could persist for a long time. By changing the top and bottom boundary 
conditions in relation to the radiative heating power, the relative temperature 
gradient in the stable region could also be varied. I n  this manner the convection 
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a t  critical and supercritical Rayleigh numbers could be studied. The experiment 
thus showed results of a situation which is also hopefully tractable to theoretical 
expansion procedures about the marginal state. Questions about the form of 
convection in the two horizontal directions could be answered, as well as the 
nature of any subcritical finite amplitude instabilities. Lastly, details of the 
observed flows could be measured as a function of the experimental parameters 
to indicate the nature of the supercritical penetrative flows. 
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FIGURE 6. Schematic view of the experimental apparatus. 

Apparatus. The apparatus shown in figure 6 consisted of a cubic glass tank 
one foot on each side. It was filled with mineral oil. The top and bottom surfaces 
were maintained at  constant temperatures by circulating baths. Radiation from 
two 500-watt floodlights was introduced downward into the oil through the 
transparent top, and a substantial part of the energy from this radiation was 
absorbed by the top few centimetres of mineral oil, and subsequently lost through 
conduction and convection to the top surface. This resulted in a destabilized 
layer near the top in which convective currents originate. Visual observations 
were made using top-view and side-view shadowgraphs, while local tempera- 
ture measurements were taken using a small movable thermocouple probe 
suspended on fine wires. 

A number of steps were taken to ensure the precision and reproduceability of 
the experiments. Careful measurements of radiation as a function of depth in 
the oil enabled us to calculate the effective heat source and consequently the 
temperature distribution. The radiation was monitored periodically, and the 
variation in the input power was provided by a variable transmission rotating 
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chopper, so that the spectrum and hence the absorption characteristics of the 
light stayed constant from experiment to experiment. The two 500-watt quartz- 
iodine bulbs which supplied the heat energy had an estimated lifetime of 10,000 h 
and were measured to decrease by 4 % over the total 3500 h of the experiment. 

Temperature ("C) 

29.3 
25.0 
21.0 
18.5 
16.0 

45.0 
37.0 
32.0 
25.5 
22.0 

22.0 

33.0 

Viscosity (cp) 

106 
133 
181 
216 
258 

Density (g/cm3) 
0.860 
0.865 
0.870 
0.878 
0.880 

Thermal conductivity 
cal/sec "C cm 

0.00032 
Coefficient of expansion 

y - 1  

0.0011 

Note: C, was not measured but lies between 0.45 and 0.55 cal/g "C for 
most organic oils. 

TABLE 1. Measured properties of the working fluid 

It was necessary to take great care in eliminating horizontal inhomogeneities 
in the thermal field, as otherwise large-scale currents were easily set up in the 
tank. The two floodlights were situated 150cm above the tank, the distance 
being a compromise between having .uniform heating intensity up to five times 
that needed for instability (7.5 cal/sec over the 30 em x 30 em surface of the tank) 
with a variation in intensity of 5 % between the centre and the edge of the top of 
the tank, and a variation of 10 yo between the centre and the corner of the top of 
the tank. The sidewalls were insulated by 2.5 cm of foamed polystyrene cemented 
to a copper plate which matched the stratified temperature gradient, the outside 
of which was covered with another 5.08 cm of foamed polystyrene. Only in this 
way was the thermal leakage out of the sides reduced to tolerable levels of 
0-05"C/cm, as compared to the vertical temperature gradients of 0.05 to 
0.5 "C/cm. 

The top coolant not only had to remove the heat from the convecting fluid 
below, but also was subjected to intense radiative heating from the lamps above. 
Consequently, relatively transparent Kerosene was chosen as the coolant, and 
the temperature drop of the fluid as it flowed through the $in. plate glass bath 
was kept to below 0.5 "C by the rapidity of the Kerosene flow. The bottom coolant 
(water) did not have any substantial temperature drop as the radiative energy 
and temperature gradient was generally much smaller. 
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The working fluid was USP grade mineral oil, supplied by Dennison 
Laboratories, Providence, R.I. Its properties are given in table 1. The viscosity 
was measured with a Hoeppler viscosimeter for the various temperatures used. 
The density was measured as a function of temperature with a precision hydro- 
meter good to 0.2 %. Thermal conductivity was measured at 25 "C in a hot wire 
thermoconductivity cell and was found to be 0.00032 cal/sec "C em. 

A thermal response time for this system is estimated as 

where p, k are given above. 

-Lt is one-half the length of the tank = 15 em. 

C;, is specific heat = 0.5 cal/g "C. 

Using the above values, to is found to be 27 h. 
The bath temperatures were monitored at  the inlet and outlet by thermo- 

meters and also by iron-constantin thermocouples. Since the principal aim was 
to observe steady experiments, no data was used if the thermometer readings 
varied by more than 0.1 "C over the course of an experiment. The temperature 
of the room was also kept to 25 k 1 "C. 

Details of the temperature structure in the convecting fluid were obtained 
using a thin uninsulated iron-constantin thermocouple of 0-065 mm diameter, 
the wire itself being 0-025 mm in diameter. It was stretched horizontally between 
two epoxy-insulated stainless steel vertical needles 2.5 em apart, which pro- 
jected up from a 0.25 em horizontal stainless steel tube. The assembly could move 
both horizontally and vertically on a precise track, flat to 0*005cm, and the 
position was monitored by two 10,000ohm ten-turn variable resistors to an 
accuracy of 0.01 em. The probe was moved in a horizontal direction to acquire 
data. This was done slowly enough so that the Reynolds number of the wire was 
less than and was thus in the creeping flow or 'Stokes' flow r6gime. For 
such flows the speed of response of the probe would be governed more by the 
heat capacity of the surrounding fluid than by the thermal mass of the probe 
itself. Even assuming that all fluid within 10 probe diameters is actually 'dragged' 
by the probe, the thermal response time would still be better than 0.3 see. The 
probe, scanning at  0.8 cmlsee would have a horizontal resolution of 0.24 em. 
This is a conservative estimate. In  reality the time constant could be as much as 
an order of magnitude faster than this. 

The tank was made entirely of glass so parallel light could be projected through 
the tank to produce shadowgraph pictures of temperature inhomogeneities. A 
light source was placed with an arrangement of mirrors at  an optical distance 
of 30m. Side-view shadowgraphs were obtained by opening two hinged side 
insulators (see figure 6), and shining the nearly parallel light through the glass 
walls and on to a frosted plastic screen. In  cases where it was felt that removing 
the insulation disturbed the convective flow too greatly, a limited view was 
obtained through two 7 cm x 10 cm double glassed windows on opposite sides. 
Top-view shadowgraphs were obtained by shining light upward through the 
bottom of the tank and projecting it with a removable mirror on to a frosted 
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plastic screen. Figure 6 shows the mirror arrangement. A Polaroid camera, a 
Bolex 16 mm movie camera, and a motor-driven 35 mm camera were mounted 
to record the shadowgraphs. The latter two cameras could be connected to a timer 
to obtain automatic sequencing in any interval from 10 sec to 30 min. 

Procedure. Since only one working fluid was used, the only parameters capable 
of being varied experimentally were the total radiative power and the tempera- 
ture difference between the top and bottom boundaries. The latter in essence 
fixes the asymptotic stabilizing temperature gradient, although in practice i t  is 
subject to a correction due to the radiative power input. I n  order to reveal 
physical trends, these two parameters must be varied systematically. The data 
presented below are discussed in terms of two systematic series of runs. 

In  series A the top to bottom temperature difference was held a t  several 
constant values while Q was varied from zero to 7.5 cal/sec. This was most con- 
venient experimentally, but its results are difficult to interpret physically. To 
avoid uncertainties due to starting procedures, all runs were started after the 
system had been left a t  zero power for a t  least 10h. Power was then turned on, 
and photographs and temperature scans were taken periodically. 

I n  series B the temperature difference between top and bottom of the tank was 
kept proportional to heating power. In  the absence of convection this leaves the 
shape of the unperturbed temperature distribution j ( z )  unchanged throughout 
the entire series, with the magnitude of l ( x )  being directly proportional to the 
intensity of the heating light and also the temperature difference between the 
top and bottom. Similarly L, the depth of the destabilized layer for a motionless 
fluid, remained constant. To reduce start-up time, the tests proceeded from one 
run to the next without returning to stagnant conditions. 

(ii) Experimental observations 

Critical Rayleigh number. The critical Rayleigh number can be experimentally 
determined by plotting the heating bulb power against Ad for various experi- 
mental runs, as shown in figure 7. 

This was compared with the temperature difference calculated by measuring 
the intensity of light as it travelled down through the oil. The determined effective 
heat source was then fed into a finite difference computer program which calcu- 
lated the value of A t  and L as a function of Q and p. The value of Atat  neutral 
stability was also determined. A sudden change in slope from this calculated 
(dashed) curve marks the appearance of convection. The comparison between 
the predicted curve and the experimental points in figure 8 and the data agrees 
to within a maximum estimated experimental error of k 20 %. The relation of 
these results to all the calculations is shown in figure 4. 

Estimates for this error came from uncertainties in viscosity and thermal con- 
ductivity which consequently produced uncertainty about the precise depth of 
the temperature maximum for an undisturbed fluid. This resulted in an un- 
certainty in the coefficients used to predict the critical A E  However, in a given 
series of experiments the estimates of coiisistency of the data from point to point 
are much smaller, being less than .t 5 yo. 

There was no hysteresis or other evidence of finite amplitude instability to 
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this value of & 5 %. The experimental points in figure 7 were not found in any 
particular order, and in some cases slightly subcritical experimental runs had a 
supercritical state as an initial condition. There was no evidence that the data 
from such runs differed from the data at  the same point with an initial condition 
of no convection. 
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FIGURE 7. Experimental verification of onset. In the top figure calculated Ra, w&s 564 
with S = 500. In  the bottom, calculated Ra, = 482 with S = 400. These points are shown 
in figure 4 in relation to the calculations. 

Visual observations of supercritical jlows. From the pictures of shadowgraphs, 
figure 8 (plate l), it  can be seen that at  supercritical conditions the motion con- 
sists of jets which plunge downward into the interior of the fluid. They appear 
as white dots when viewed by shadowgraph from above, and as white vertical 
lines when viewed by shadowgraph from the side. 
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The jets are intermittent in the sense that some jets tend to vanish after a 
period of time while others appear to take their place. Two neighbouring jets 
may also merge to form a single jet. This is shown in the circled regions in the 
sequence of pictures in figure 9 (plate 2). At first a white line connects the dots, 
indicating a falling sheet of fluid is forming. The line then becomes shorter as the 
jets grow closer together, until finally the original jets lose their identity, the 
line contracting to a single dot. 

New jets first appear as an instability in the top thermal boundary layer. At 
a point between existing jets the boundary layer begins to thicken and bulge 
downward. The cool fluid within the bulge soon descends, appearing in a side 
view (see jet to the left of middle in figure 10 (plate 3)) as a rather large, cool blob. 
As the blob descends it is followed by cool fluid from the boundary layer which 
forms the jet. When the blob descends to a level where there is a stabilizing 
gradient, it  slows considerably, vanishing to the surrounding fluid by heat con- 
duction. Cool surface fluid continues to  plunge in the jet which remains stable 
until i t  combines with a neighbouring jet. 

Density of jets vs. power 

If the jets had appeared in a regular periodic pattern, a well-defined wave- 
number could have been calculated from the observed distances between centres 
of the cells. In  such a case the wave-number is uniquely related to the density of 
jets per unit area. Since the observed jets are clearly not periodic, it is only 
possible to present this type of observation in terms of jet densities. 

A large number of jet counts were taken a t  various experimental parameters. 
This count must be viewed in a statistical manner, because intermittency of the 
jets causes their number to vary with time. The problems were reduced by 
averaging a large number of pictures. For the data presented, a t  least ten pictures 
spaced lamin apart were counted. The counts were averaged, and a r.m.s. 
standard deviation was calculated. There was never a case when the standard 
deviation was more than 10 % of the mean value of dots in that series of pictures. 
In two cases enough photographs were counted (64) to obtain a Gaussian distri- 
bution, thus indicating that error was of the usual random nature. 

Starting procedure for all series A runs exhibited the same sequence of 
behaviour. It is recalled that in series A all runs began with the same initial 
condition, i.e. there was a stable linear temperature distribution between top and 
bottom surfaces. After the heat lamp was turned on, the destabilized layer began 
to form on top, with convection beginning 1 to 5 h later. The jet density increased 
for the first few hours, reached a maximum, then decreased for the next 50 to 
70 h before reaching steady state. 

The steady-state measurements of jet density for both series of experiments 
are shown in figure 11.  In  general they increase significantly with heating light 
power. The jet density for series B appears to be directly proportional to heating 
bulb power. At the lower limit, both series should approach the values predicted 
from linear stability theory, although an ambiguity might exist due to the di%- 
culty in assigning cell structures. For comparison, the number of hexagonal cell 
centres from linear stability theory is shown. 
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A crude measure of the depth to which convection can penetrate was found 
from horizontal temperature scans, such as figure 12, and was checked by side 
view shadowgraphs. It was found that in series B the penetration depth did not 
change significantly with heating power. Because of this, the width to depth 
ratio of the cells is inversely proportional to heating power in series B,  and 
reaches a value of Q in the most extreme case observed. 

I I I I 

0 
Ru,=200 Predicted criticals 

S =  300 

0.5 1 .0 3 4  5.0 
Power, cal/sec 

FIGURE 11. Steady jet density measurements. 

Intermittency and average life time of the jets. A quantitative measure of the 
intermittency of the jet structure is the rate at  which these jets appear and 
disappear. A careful accounting for one test at a power of 6.0 cal/sec ( R a  = 5000) 
and a stable gradient of 0.91 "C/cm (8 = 2020) showed that 14 jets appeared over 
a span of 5 min. Since there was a total of 56 jets in the viewing area, the average 
lifetime of a jet was 20min. Less careful measurements at other power levels 
indicated that this rate of growth remained quite proportional to power for 
series B, and hence was inversely proportional to the square of the spacing 
between jets. 

During one phase of the research it had been strongly suspected that the 
intermittency might be caused by large-scale motions due to inadvertent non- 
uniformities of the heat source or side boundary conditions. To check this an 
experiment was duplicated with extra precautions to ensure the uniformity of 
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the radiation flux. A more elaborate arrangement was also used to simulate the 
vertical temperature profile in the side walls, which consisted of a heating tape 
wrapped around the top of the sides of the tank to match both the destabilizing 
and stabilizing temperature gradients. Although these non-uniformities were 
decreased by more than an order of magnitude, the experiment resulted in an 
average lifetime for the jets of 20 min, identical to the above-mentioned measuret 
ment. The number of jets being swept into or out of the viewing area by large- 
scale motion in a period of 5 min was negligible (one). It was thus concluded that 
the intermittency was not due to large-scale circulation arising from non- 
uniform horizontal temperatures. 

1 

0 I00 
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FIGURE 12. A transient study showing that parameters were independent of history. 

Lack  of history dependence. A long experiment was conducted to investigate 
the importance of history in determining the flow field and the parameters of the 
motion. The jet density was used as a measure of the state of the fluid, as shown 
in figure 12. The experiment began without radiant heating for 2 h. The heating 
lamp was then turned on and the attenuating chopper set a t  2-5cal/sec. The 
system was left for approximately 120 h in this state, with the mean number of 
jets being counted and the temperature distribution being measured. After 120 h, 
power was increased to 4.5cal/sec. The apparatus was left for another 50h, 
during which mean jet count and AT were found to change by 40 yo and 50% 
respectively. Radiant power was then reset to 2.5 cal/sec, and mean jet count and 
AT were observed to see if they returned to their previous values. After 100 h 
more, mean jet count was found to be only 4 % greater than the original count. 
The evolution of the maximum mean temperature and mean jet count are shown 
in figure 12. The system was seen to return to  its original parameters, and it can 
be concluded that the value of these parameters is not determined by the history 
of the experiment. 
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No effort was made to use uniform starting procedure for the various series B 
experiments. The fact that data were consistent and reproducible was also an 
indication that the flow was not determined by the history of the experiment. 

Recently Snyder (1969) reported that the number of rolls in a counter-rotating 
cylinder was strongly dependent on history. In  his case, the flow has an adjacent 
stabilized region similar to the present studies. His flow was anisotropic in 
the form of steady periodically arranged two-dimensional rolls. Perhaps the 
intermittent motions observed in the present experiments were instrumental 
in keeping the jets free of any wall constraints by allowing continual adjustment 
of the flow structure. In  a steady system the constraining effects of the side 
boundaries may be felt due to a lack of such an adjustment mechanism. 

Distance from side (em) 

FIGURE 13. Typical temperature scans. 

"C 

Structure of the cells. An idea of the structure of convective cells can be obtained 
from horizontal temperature scans by the movable thermocouple probe. A 
sequence of these scans at  various depths below the top surface, such as those 
shown in figure 13, shows the width and amplitude of the cool descending jets. 
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When the amplitude of these jets was plotted against depth, as figure 14, it 
was noted that cool fluid heated up as it descended. It presumably absorbed heat 
from the hot upwelling fluid around it by thermal conduction. 
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FIGURE 14. Amplitude of the jets as a function of depth. 
0, peak jet temperature; x , upwelling temperature. 

Mushroom-like structure of jet fronts 

An interesting aspect of the penetrative and intermittent motion is the 
mushroom-like structure associated with a few of the deep penetrating jets (see 
figure 8). Such structures have been associated with penetration into stratified 
fluid by Saunders (1962); in our case, they were more frequently observed with 
low stabilizing gradient where there was also more intermittent motion. A tenta- 
tive explanation of their origin is given as follows. A new jet is formed when a 
blob of fluid becomes unstable. Time lapse movies and figure 10 show some blobs 
falling, and some of these apparently penetrate deeper than the steady jets. As a 
blob enters the stabilized region its velocity decreases rapidly, and it spreads out 
horizontally, acquiring the mushroom shape. The structure of these mushrooms 
is quite interesting, although to investigate it in more detail would involve con- 
siderable effort beyond the scope of the present studies. 
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Discussion of experimental observations. The various experimental investiga- 
tions which have been made were generally exploratory in nature. In  this spirit, 
only limited experimental data were obtained for the condition of marginal 
stability. To extend the range would require either changing the working fluid, 
which it was not possible to do without changing the optical absorption charac- 
teristics, or it would require using smaller stabilizing temperature gradients, 
which would increase interference from imperfect side wall conditions, and would 
result in a much larger margin of error. 

However, in the limited range of parameters studied, an interesting finding of 
this experiment has been the absence of measurable subcritical finite-amplitude 
instability. As was said before, the expansions of Veronis (1963) and Krishna- 
murti (1968a) indicated that this instability should exist and be considerable, 
although the former had a rather unique finite-amplitude behaviour, and the 
latter was not necessarily valid for penetrative flows. In  the present experiment, 
bulb power and stabilizing gradient were the independent variables. In  series B 
runs, where unperturbed temperature amplitude is proportional to &, there was 
no dip in the Q vs. AT curve which occurred in Krishnamurti’s predictions. 
Spangenberg & Rowland (1961) noted that it took a much smaller Rayleigh 
number to sustain motion than to initiate it, almost by a factor of ten. This was 
not observed in our experiments. 

The intermittent process observed in the rolls may be coupled to the inertial 
oscillations in the stabilized region which were reported by Townsend (1966). 
Aside from the intermittence of the jets, there was no other evidence of such 
oscillations in our case, probably because we were close to the marginal state and 
therefore inertia was negligible compared with viscous diffusion, whereas 
Townsend was considerably above the marginal state and so inertia was more 
important. In  our experiment, the estimated period of inertial oscillations would 
range from 10 sec in the region of highest gradient to infinity in the isothermal 
region between the stable and unstable layers. The actual period would therefore 
be dependent upon the depth of penetration into the stabilized fluid; it is 
consequently amplitude-dependent, and a simple comparison is not possible. 

One of the striking departures of these results, as well as the results of Tritton 
& Zarraga, from those of the classical Rayleigh-BBnard convection, was that the 
convection cells are not arranged in an orderly periodic structure, such as regular 
hexagons or two-dimensional rolls. On the other hand, the convective motion 
observed here is clearly not completely chaotic, as would be the case for complete 
turbulence. Thus, the observed flow structure has a measure of ‘orderliness’ 
lying somewhat between the complete regularity of Rayleigh-BBnard convection 
and true turbulent convection. This situation can be likened to the position 
occupied by liquid molecules in comparison with the ordered crystallinity of 
solids and the complete randomness of gas molecules. 

In  the case of uniform volume heating in a shallow tank without a stabilized 
region below, it has been shown theoretically by Krishnamurti (1968a) and 
Roberts (1967) that, if the temperature gradient decreases downward, the flow 
would consist of hexagons with cool fluid descending as a jet in the centre. 
In  so far as our observed flow consisted of descending jets, it appeared to be in 
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partial agreement with their theories, although our observed structure lacked 
the regularity of hexagons. Their studies, of course, were not completely relevant 
to our problem, since their fluid layers were bounded by solid planes rather than 
stable regions. One is thus led to the speculation that the substitution of the solid 
boundary by a stably stratified region destroys the order which results in regular 
hexagons. 

In  contrast to the hexagonal observations is an experiment by Spangenberg & 
Rowland (1961) and Foster (1965b). They observed the transient and final 
motion of a water layer suddenly cooled from above by evaporation. A thick 
destabilized layer resulted from the evaporative cooling, and convective current 
was found to plunge into the isothermal liquid below. It is not clear whether 
evaporation over the entire surface was uniform, but the motion observed was not 
uniform. The observed flow was described as a series of intermittent plunging 
sheets and columns. Because of the free surface on top, each successive plunge 
could sweep all the cooled surface fluid with it into the interior, after which the 
motion stops because the destabilized layer has vanished. Eventually a new 
destabilized layer is generated by evaporation, and the cycle repeats itself. In 
contrast to our qualitative observations, Spangenberg & Rowland observed 
intermittent sheets of plunging liquid with only a few jets, whereas Foster 
observed predominantly jets. 

In  our experiments, the presence of the rigid top surface prevents the cold fluid 
from draining completely. Therefore, it is not obvious that the cause of the inter- 
mittency is the same as that suggested by Spangenberg & Rowland. On the other 
hand, the following sequence of events, proposed as a tentative explanation of 
the intermittency, bears some basic similarity to the mechanism of Spangenberg 
& Rowland. It appears that when pairs of jets are close together there is an 
instability with respect to their mutual distance, which arises because the total 
drag on the two jets would decrease, resulting in more efficient ‘draining’ and 
consequently drawing the jets even closer together. Eventually this process 
results in the two jets merging into one. This process serves to enhance mixing 
in the general area around these two jets, so that subsequently less temperature 
difference is available to act as a driving force. This results in temporarily 
inhibited convection. The process then repeats itself after a suitable period. 

Our observation that cells came closer together as power was increased was 
a singular departure from observations of general convective flows (Chen & 
Whitehead 1968), and in particular from the observations of Tritton & Zarraga, 
where the cellular structure was observed to get very much wider as flow 
increased, up to five times the critical width. Our observations were quite con- 
sistent throughout all the experiments, and we feel strongly that they are valid 
for this experiment. Perhaps the absence of a solid boundary below the flow 
permits higher harmonics to enter into the flow pattern in a continuous manner, 
as opposed to the discrete manner in which Malkus (1954) suggested; and 
Krishnamurti ( 1 9 6 8 ~ )  d )  observed modes enter into the flow of fluids confined 
between two surfaces. 

It must be remembered that the isothermal region remains constant, while the 
thermal boundary layer becomes shallower. It is reasonable to expect that the 
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driving force of the flow comes primarily from the thermal boundary layer, and 
that the unstable mode which results in jets is primarily related to the boundary- 
layer thickness. Consequently, the width-to-depth ratio of the cells becomes 
much smaller than unity. 

This work was supported by National Science Foundation Grant GK-I 702, and 
constituted part of the Ph.D. dissertation for one of the authors (J. A. W.) at 
Yale University. 
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FIGURE 8. Top and side shadowgraph views of the convective motion. 
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FIGURE 9. Time sequence of a top shadowgraph picture showing non-stationary behaviour 
of jets. The sequences of circles show neighbouring jets (white dots) as they merge, while 
the sequences of squares show new jets forming to fill the gaps. 
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FIGURE 10. Time sequence of side shadowgraph pictures showing the formation of a new 
jet and merging of neighbouring jets. The dark upper portion of the picture is greatly 
stretched in the vertical direction due to the top temperature gradient. 
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